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Abstract
Ensuring adequate food availability to an increasing world population constitutes one 
of the biggest challenges faced by humankind. Scientific and technological advances 
in food production during the last century enabled agriculture to cope with the con-
comitant increase in food demand. For example, cereal yields have more than dou-
bled from a global average of 1.5 metric tons per hectare in the 1960s up to 3.2 metric 
tons per hectare in 2018. This was made possible by the work in different research 
fields such as agronomy, engineering, and plant sciences, showing that an inter and 
multidisciplinary approach is indispensable for significant progress. This manuscript 
is aimed at generating reflexion and analysis about the challenges that agriculture 
faces at present to satisfy projected food demands, which implies a further doubling 
of food production by 2050, according to the latest estimates. Relevant issues related 
to food production (climate change, pollution of water and soils by pesticides and 
fertilizers, loss of germplasm and biodiversity) are discussed and potential solutions 
to achieve food security in quantity and quality are reviewed, mainly from the plant 
breeding and crop-production perspectives, always associated with environmental 
health preservation and improvement. A broad transdisciplinary effort is needed to 
increase the impact of science and technology to provide more people with healthier 
and safer food, produced in a sustainable way. Nonetheless, science and technology 
alone will not succeed to meet those challenges. Education and knowledge transfer 
strategies are needed to guarantee responsible production and consumption every-
where, therefore allowing the benefits of scientific and technological progress reach 
the world population. Simultaneously, adequate action by regulatory authorities 
and governments concerted at international level, with thorough application of the 
Precautionary Principle, and aiming at environmental and social justice are impera-
tively required to meet the challenge and achieve the goal.
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1 |  INTRODUCTION

Long-term global food security depends on the balance be-
tween the supply and demand of the major food crops (Parry 
& Carmo-Silva,  2016). Food production increased tremen-
dously during the past century thanks to outcomes from 
research and technology-transfer initiatives that took place 
between the 1930s and the late 1960s. This food production 
increase, globally known as “green revolution,” was based 
on selecting high-yielding cereal varieties, especially semi-
dwarf wheats and rice, increased mechanization, expansion 
of irrigation infrastructure, greater application of chemical 
fertilizers, and introduction of synthetic organic crop-pro-
tection chemicals (Peshin et al., 2009; Weisenburger, 1993). 
Altogether, these initiatives doubled crop productivity per 
hectare (Carvalho,  2006), particularly in the developing 
world (Hazell, 2009), thus saving over a billion people from 
starvation (Farmer, 1986).

Despite the great improvement that this technology-pack-
age brought up for humankind, collateral negative effects to 
people and the planet by some of those technologies, unpre-
dicted at their introduction, have emerged with time. For in-
stance, pesticide resistance developed by pests triggered the 
increase of demand and further usage of pesticides, while 
evidence of harmful effects on human health and the envi-
ronment were perceived during the last few decades only 
(Nicolopoulou-Stamati et  al.,  2016). Furthermore, modern 
agriculture has been accused to be the greatest source of 
water pollution with contamination of aquifers with nitrates, 
mainly from the increased usage of synthetic fertilizers and 
animal manure in farming (FAO and IWMI, 2018). Modern 
agriculture has been directly associated also with the increas-
ing shortage of water especially potable water for human 
consumption, decrease in biodiversity, and disruption of 
functional ecosystems, which in turn have led to more fre-
quent climacteric catastrophic events (Ward et  al.,  2018). 
Thus, it is evident that the need to produce more and healthier 
food renders food production even more complex and chal-
lenging than thought years ago.

Food security constitutes one of the main today’s chal-
lenges that include the need to further increase the produc-
tion of adequately nutritional and safe food using sustainable 
methods to preserve healthy and functional ecosystems, while 
restoring those that have been disrupted. However, there are 
still some paradoxes to be solved before achieving this goal, as 
the huge amount of food wasted throughout the food produc-
tion chain, and the long list of social, cultural, and economic 
constraints that developing countries would need to address 
to reach a more equative situation, hence enabling a strong 
global effort at the unison. These paradoxes have led some 
authors to state no relationship among hunger, food produc-
tion and human population growth, indicating that the real 
causes of hunger are poverty, inequality and lack of access 

to food and land, as for every densely populated and hungry 
nation (like Bangladesh or Haiti) there is a sparsely popu-
lated and hungry nation (like Brazil and Indonesia) (Altieri & 
Rosset, 2002). Aligned, other researchers have indicated that 
human population growth varies in function of food availabil-
ity, and therefore, the effect of increasing food production will 
be an increase in the human population (Paoletti et al., 2011), 
then turning food security into a permanent unbeatable chal-
lenge, leading humankind to extinction as all Earth resources 
are plausibly disappearing. Although this forecast would be 
in accordance with the population's dynamic ecology theory, 
we do believe humankind is able to thrive. To do so, it is 
imperative to rethink and improve our entire food production 
system through multi, trans and interdisciplinary work, as all 
disciplines are interconnected despite their apparent nonrela-
tiveness, as suggested in Figure 1.

Some publications have addressed the main concerns and 
challenges related to food and nutrition security, tackling 
the most innovative advances of science and technology to 
achieve this goal, as the one by Tian et al. (2016). However, 
some of the innovations described therein, such as DNA 
barcoding, nanosensors and “Lab on a chip”, are still at ex-
perimental level and, although promising, do not necessarily 
mean a tangible contribution applicable right away. Similarly, 
Myers et al. (2017) described the potential impacts of climate 
change on agriculture, fisheries and animal husbandry that 
would lead to negative effects on food security and health, 
thus highlighting the importance of research, although reme-
diation alternatives remain to be suggested.

Thus, the purpose of this manuscript is generating re-
flexion and analysis about the challenges that agriculture 
faces at present, by exposing the issues, discussing the un-
derlying causes, providing examples being applied success-
fully in case they exist, and proposing potential solutions to 
achieve food security (Figure 2) in accordance to the FAO 
(1996) concept [i.e., “(…) physical and economic access 
to sufficient safe and nutritious food in order to meet peo-
ple´s dietary needs and food preferences for a healthy and 
active life” (Pinstrup-Andersen, 2009)] and the Sustainable 
Development Goals of the 2030 (SDG 2030) Agenda of the 
United Nations (UNO, 2015), mainly from the plant breeding 
and crop-production perspectives.

2 |  WATER SCARCITY AND 
CLIMATE CHANGE AS A 
CHALLENGE

2.1 | Climatological phenomena

Atmospheric CO2 concentration ([CO2]) is directly linked 
to global temperature. [CO2] is predicted to increase from 
near 400 μmol/mol in 2015 to 550 μmol/mol in 2050, along 
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with other greenhouse gases produced by industrial activi-
ties. Consequently, the global mean temperature will increase 
around 2°C (RCP8.5 scenario; IPCC, 2013), as well as the 
frequency and severity of heat waves (and droughts) in many 
cropping areas (IPCC, 2014). Temperature could even rise up 
to 6°C, if the global economy and human population continue 
to grow at their current rates (Pachauri et al., 2015).

Changes in air temperature alter rainfall patterns and 
the occurrence of climatic phenomena. High-temperature 
heats up Earth surfaces and the nearby air masses, giving 
way to the convection process (air masses movements), si-
multaneously to the increase in vapor pressure (ability to 
contain relative humidity) of air. Such changes can result in 

the extension of water shortage periods, followed by heavy 
rains, thus limiting food production due to water stress, ei-
ther by drought (Christensen et al., 2007; Dai & Zhao, 2016; 
Lobell & Field, 2007; Tebaldi & Lobell, 2008)—especially 
on rainfed crops-, and/or flooding. For instance, the cascade 
of climatological events occurred in southern Peru due to 
El Niño Southern Oscillation (ENSO) phenomenon during 
2016–2017—heat and drought (from October to January) 
followed by strong rainfalls, floods, landslides, thunder-
storms, snowfalls and hailstorms brought by an unusual drop 
in temperatures due to the subsequent La Niña phenome-
non (known also as “friaje”)—caused the loss of 25,671 ha 
of crops, 61,403  ha of crops affected, and 6,593 irrigation 

F I G U R E  1  Scheme of the multi, intra and interdisciplinary nature of Food Security, showing the most relevant issues and topics addressed 
throughout the manuscript, focusing in achieving the Sustainable Development Goals of the 2030 Agenda of the United Nations
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channels destroyed (INDECI,  2017), thus threatening seri-
ously the food and nutritional security of the Peruvian pop-
ulation. These phenomena have turned recurrent, since the 
south of Peru was newly affected in February 2020, while a 
new ENSO episode is predicted for 2020–2021 (DG, 2020). 
Thus, climate change can be the main cause of famine, while 
contributes to malnutrition and poor health, among other as-
sociated social disasters (Funk et al., 2019).

2.2 | Water-use efficiency in crops

Concomitantly to the explained above, global warming also 
increases evapotranspiration, that is, water loss by plants, 
whose effects largely depend on the properties of soil and 
of the own plants (Minasny & McBratney, 2018). Soil water 
availability to plants relies on water supply and the water-
holding capacity of soil, either under irrigation or rainfed 
conditions. In this regard, it has been stated that, as long as 
the water content of soils is sufficiently available for plants, 
elevated [CO2] would trigger the mitigation of water stress 
by promoting a decrease of stomatal aperture (via genetic 
responses driven by the joint effect of specific proteins 
and phytohormones, mainly abscisic acid, that would con-
trol guard-cell movements), thus avoiding water loss while 
increasing net photosynthesis (Leakey et  al.,  2009; Tausz-
Posch et al., 2012). In contrast, water scarcity and drought 
would result into a small—or null—net (positive) effect 
of the theoretical “benefits” of increased [CO2] on yields 
(Lobell & Field, 2007; Zhang et al., 2018), as stomatal clo-
sure (to avoid water loss) would impede CO2 intake by the 
plant, and therefore, photosynthesis. Therefore, enhancing 
the water-use efficiency of plants would be key to cope with 
climate change effects on crops (Zhang et al., 2018).

Climate change exerts a strong influence on water at all 
scales, from individuals to the environment. Scarcity of this 
limited resource affects every continent (FAO,  2016). At 
present, nearly two thirds of world population suffer water 
scarcity at least during part of the year, and it is estimated 

that 700 million people worldwide could be displaced due to 
severe water scarcity by 2030 (Global Water Institute, 2013). 
Agriculture is the largest user of freshwater (Li et al., 2019). 
Therefore, implementing water-use efficiency strategies in 
food production is crucial to ensure sufficient water for both 
food production and human consumption (FAO, 2016). For 
instance, development of crop varieties with significant yield-
ing capacity under extreme temperatures and water stress 
conditions (drought and flooding), while developing meth-
ods to increase soil water-holding capacity—as incorporation 
of organic material to soils—as vegetal charcoal (biochar) 
and compost while promoting the development of beneficial 
flora and fauna—for example, the earthworm Eisenia foetida 
and related species, and microorganisms (fungus, bacteria, 
among others)—simultaneously, would be an asset. Also, 
implementation of water-saving agriculture technologies to 
buffer crop yields against future adverse weather conditions 
would increase the success to face water scarcity in the near 
future.

Among the water-saving agriculture technologies, the 
Regulated Deficit Irrigation (RDI) is being successfully ap-
plied for intensifying agriculture and improving yields and 
quality, while reducing the use of water according to the 
phenology and physiology of the crop. This technology, ap-
plied as partial root-zone irrigation or drying (PRI or PRD, 
respectively), intentionally seeks to supply a reduced volume 
of water locally in 50% of the root system, so that the other 
half is subject to a moderate degree of drought (McCarthy 
et  al.,  2002). Doing so, the emission of chemical signals 
from the dry part of the root system to the stem, generates 
a response in the plant aimed at saving water (stomatic clo-
sure) (Davies et al., 2002), while the contribution of water 
from the wet part allows the plant to continue its growth, 
thereby increasing its water-use efficiency (Dodd,  2009). 
A more precise use of the PRD technique would alternate 
the irrigated and dry halves of the root system from time 
to time, in order to maintain the potential chemical sig-
nal in both halves of the plant (along with the water flow) 
(Dodd et  al.,  2008). The application of PRD would allow 

F I G U R E  2  Scheme of the read-flow of the manuscript
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for the extension of irrigated areas without additional water 
consumption, thus keeping the expenses of water as usual 
and contributing significantly to achieving food security, 
particularly in arid areas (Garcia-Tejero et  al.,  2018). At 
present, high-irrigation technology investments have been 
done in agriculture aiming in improving water management. 
However, implementing knowledge-transfer and capaci-
ty-building strategies on water-saving, as PRD, are urgently 
needed for a proper application of the technique and prof-
itability of the implemented technology (Chávez-Dulanto 
et al., 2018).

3 |  CHALLENGES ASSOCIATED 
TO PAST CROP-BREEDING 
ACTIONS

3.1 | Loss of biodiversity

Crop breeding in the last century directed crop selection to-
ward increasing the economic yield of cultivated species, fo-
cusing on selecting particular traits, such as high-yield and 
easy harvest, leaving aside traits that are the hereditary basis 
for crop survival during both biotic (pests, pathogens, herbi-
vores) and abiotic (drought, flooding, nutrient deficiencies, 
salinity) stresses. These traits were rarely selected and are 
thus rare or absent in modern cultivars (Palmgren et al., 2015; 
Reif et al., 2005; Sramkova et al., 2009; Zamir, 2001), as less 
productive wild types were underestimated by crop breed-
ers, thus causing a decrease of the genetic variation of com-
mercial crops, that is, genetic erosion. Consequently, current 
(modern) cultivars tend to require high-external agronomic 
inputs, as fertilizers for enhanced production and pesticides 
for crop protection (van Bueren et al., 2011).

Landraces, defined as local and native varieties of crops, 
are a source of genetic diversity, as they contain precisely the 
genes for resistance to drought, extreme temperatures, pests 
and diseases, as well as for high content of nutrients and other 
health-promoting substances (e.g., flavonoids, carotenoids, 
oligo elements, vitamins), among other features. However, 
in the developed world, current agriculture replaced many 
traditional varieties of major field crops and discarded land-
races (van de Wouw et al., 2009). Fortunately, in developing 
countries, local varieties are still cultivated in extended areas, 
especially for crops with high importance for food security, 
as wheat, rice, potato and maize. Likewise, the importance 
of landraces still prevails in the major centers of genetic di-
versity, such as for potato in the Andes (Brush et al., 1995) 
and wheat in the Middle East (Bardsley & Thomas,  2005; 
Kebebew et  al.,  2001). Although farmers are not acknowl-
edged as the true guardians of crop biodiversity, mostly 
(Girard & Frison,  2018), their role as preservers of local 
and native varieties of crops (landraces) in which natural 

selection has favored mechanisms of adaptation and survival, 
is nowadays recognized and seems crucial for food security 
(Cattivelli et al., 2008).

To cope with the permanent threat of disappearance for 
local and native varieties due to their limited commercial de-
mand, global efforts for collection and long-term conservation 
of germplasm—the hereditary material (genes) transmitted 
to the offspring through germ cells—have been developed 
during the last decades. Germplasm banks have been created 
and established to store, conserve, and subsequently make 
available the plant genetic resources of major crop plants and 
their wild relatives. The International Board of Plant Genetic 
Resources (IBPGR), one among several international ini-
tiatives, have been established for germplasm conservation, 
whose main objective is to provide the necessary support 
for collection, conservation and utilization of plant genetic 
resources throughout the world. Germplasm conservation 
efforts are focused on crops of major importance to food se-
curity (i.e., apple, bambara groundnut, banana, barley, bean, 
carrot, chick-pea, cowpea, eggplant, fava bean, finger millet, 
grass pea, lentil, oat, pea, pearl millet, pigeon pea, potato, 
rice, rye, sorghum, sunflower, sweet potato, vetch and wheat) 
(Dempewolf et  al.,  2014; FAO,  2009). Further research on 
germplasm preservation of these and another high-nutritional 
quality crops must be encouraged to assure survival in case 
of (unexpected) constraints and/or disasters. Per example, the 
current global covid-19 quarantine has been unfavorable to 
many farmers in developing countries, who therefore would 
need urgent aid from their Governments and international or-
ganizations to get access to germplasm (and other resources) 
to assure survival.

3.2 | Loss of nutritional quality of 
food crops

Several recent research papers have suggested that, when 
commercial quality parameters (i.e., colour, size, shape, easy 
harvest, among others) are privileged, then the nutritional 
quality of the product along with other desirable traits (e.g., 
resistance to pests and diseases, resilience to drought, among 
others) decreases. Loss of nutritional quality was highlighted 
in the work by Fan et  al.  (2008) who assessed the mineral 
concentration of archived wheat grain and soil samples col-
lected from the Broadbalk Wheat Experiment in the United 
Kingdom since 1843. They found that concentrations of Zn, 
Fe, Cu and Mg in the grains had decreased significantly (ap-
proximately 20%–30%) since 1968, right at the time at which 
semidwarf high-yielding cultivars were introduced. This de-
crease of oligo element concentrations in grains occurred de-
spite the fact that their concentrations in soil either increased 
or remained stable (Fan et al., 2008). This fact would show 
that the harvest index (HI) has increased while the nutrient 
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uptake by the plant has been kept the same as from the orig-
inal wheat, thus creating an imbalanced nutrient intake by 
modern wheat cultivars, a fact to be assessed from a genetic 
perspective, in order to find high-resilient genotypes to biotic 
and abiotic stresses brought up by climate change, as seen in 
the precedent section.

Plant domestication also has led to a severe reduc-
tion in genetic diversity within most crops (Dempewolf 
et al., 2014; Olsen & Gross, 2008) and changed crop qual-
ity. A good example is wheat, in which the introduction of 
semidwarfing genes to increase HI has decreased grain pro-
tein (Sramkova et  al.,  2009; van Bueren et  al.,  2011) and 
micronutrient (zinc (Zn), iron (Fe), copper (Cu) and magne-
sium (Mg)) concentrations compared to their wild relatives 
(Fan et al., 2008; Garvin et al., 2006; Verma et al., 2005), as 
seen above. Commercial tomato varieties (Solanum lycop-
ersicum) provide another example in which breeding efforts 
have narrowed its genetic base, leading to a loss of genetic 
diversity, nutritional value and flavor due to a decreased 
concentration of sugars, acids, volatile compounds (Tieman 
et al., 2017; Wang et al., 2016; van Bueren et al., 2011) and 
carotenoids (Zsögön et al., 2018). From the latter, lycopene 
and β-carotene largely determine the nutritional value of 
tomato (Zsögön et al., 2018). The first one, lycopene, has 
shown anti-inflammatory properties, and its dietary intake 
is correlated with reduction of cardiovascular and cancer 
risks (Clinton, 2009; Zsögön et al., 2018). However, lyco-
pene content is low in the commercial cherry tomato, 60–
120 mg/kg lycopene, compared to its pea-sized wild parent 
Solanum pimpinellifolium, where this antioxidant accumu-
lates to levels of up to 270  mg/kg (Zsögön et  al.,  2018). 
Another example of how breeding efforts may unintention-
ally cause some specific traits to disappear, is the maize 
gene acyl-CoA: diacylglycerol acyltransferase (abbreviated 
DGAT), a key enzyme in the production of triglycerides that 
leads the production of oil with the healthy mono-unsatu-
rated fatty acid oleic acid. During maize domestication, a 
small deletion of three bases in the DGAT gene occurred, 
and consequently, a significant loss in the activity of the en-
coded mutant protein (Palmgren et al., 2015). Consequently, 
from a nutritional point of view, corn oil contains relatively 
more omega-6 and less omega-3 polyunsaturated fatty acids 
and, therefore, it is not considered a particularly healthy 
vegetable oil. Likewise, potato breeding prioritizing on 
high-productivity and commercial characteristics, such as 
short crop cycle and aspects of tubers (clear skin, shape—
oval or rounded, superficial eyes, large and uniform size) 
has diminished characteristics related to nutritional qual-
ity, such as, high content of dry matter and low content of 
reducing sugars and glycoalkaloid among others, as well 
as traits for resistance to biotic (pests, diseases, etc.) and 
abiotic environmental stresses (frost, drought, hail, salinity, 
etc.) (Cahuana et al., 2012).

In the last decades, fighting against malnutrition has been 
selected as one of the targets of crop breeding in develop-
ing countries. Malnutrition includes overt nutrient deficien-
cies and diet-related chronic diseases (e.g., heart disease, 
cancer, stroke, and diabetes). Micronutrient deficiencies 
are responsible for the slow socioeconomic development of 
many nations due to its contribution to increased morbidity, 
disability, stunted mental and physical growth of population 
(Wang et al., 2019; WHO & FAO, 2003). Micronutrient defi-
ciencies are associated to food insecurity (King, 2018), being 
more severe at lower income countries and more prevalent 
in those with poor dietary diversity (Ritchie & Roser, 2017). 
An estimated 17.3% of the world's population suffers micro-
nutrient deficiency mainly due to inadequate Zn (Wessells 
& Brown,  2012) and Fe intake (Murray & Lopez,  2013; 
WHO, 2008, 2009). Zn deficiency causes the annual death of 
nearly a half million of children under the age of five, while 
Fe deficiency causes anemia in approximately 25% of the 
world's population (WHO,  2008, 2009). Since staple-grain 
cultivated varieties can contain suboptimal quantities of mi-
cronutrients as Fe and Zn (Borril et al., 2014), crop-breeding 
international programs are producing bio fortified crops with 
vitamin A, Zn and Fe to avoid blindness, promote growth in 
children and diminishing anemia, respectively.

“Harvest Plus” is an example of these international ini-
tiatives to fight micronutrients deficiencies. Special efforts 
are concentrated on crops with the highest consumption 
per capita around the world, that is, rice [Oryza sativa L.] 
(Borlaug,  2000; Trijatmiko et  al.,  2016), wheat [Triticum 
aestivum L.] (Borlaug,  2000; Borrill et  al.,  2014; Bouis & 
Welch,  2010; Guzman et  al.,  2016), maize [Zea mays L.] 
(Borlaug, 2000; Bouis & Welch, 2010; Queiroz et al., 2011), 
cassava [Manihot esculenta Crantz] (Bouis & Welch, 2010), 
pearl millet [Pennisetum americanum Leeke] (Bouis & 
Welch,  2010), beans [Phaseolus vulgaris L.] (Bouis & 
Welch, 2010), potato [Solanum tuberosum L.] (Borlaug, 2000; 
Kromann et al., 2017) and sweet potato [Ipomoea batatas L.] 
(Bouis & Welch,  2010; Laurie et  al.,  2015), among other 
crops. These efforts to compensate or correct nutrient imbal-
ance in many food crops further underline losses in food qual-
ity due to reduced biodiversity and genetic erosion caused by 
past cultivar selection procedures.

These facts have demonstrated that to protect and ensure 
nutritional quality of food, current global efforts for col-
lection and long-term conservation of germplasm should 
enhance focus on crops of major importance to food secu-
rity (quantity and quality), and biodiversity preservation. 
Consequently, high productivity and stress-resilience should 
be bred jointly, not separately. Therefore, crop-breeding 
should focus on developing new tools to assess both criteria 
of germplasm, as, per example, the mathematical-statistical 
method developed by Thiry et al. (2016), described further 
in section 8.1.
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4 |  CHALLENGES ON 
FOOD PRODUCTION AND 
AGROCHEMICALS

4.1 | Pesticides

Synthetic chemicals used as pesticides became part of ag-
riculture systems during the past century. Although they 
contribute to increased yields of crops, a number of col-
lateral effects were reported on human health and wildlife 
(Carvalho, 2017). Pesticide exposure of humans is particu-
larly worrisome.

Pesticide exposure can be classified as intentional and 
unintentional exposure. Intentional exposure is associated 
with suicides, mostly in developing countries, according to 
Sabarwal et al. (2018). In turn, unintentional exposure can be 
classified into occupational and nonoccupational exposure, 
with the former related to laborers engaged in manufacturing, 
transportation and trading of pesticides, farmers, applicators 
and sellers of fruits and vegetables in the markets, and the lat-
ter linked to exposure mainly at the consumer level, compris-
ing humans and animals, via ingestion of fruits, vegetables, 
and grains (Sabarwal et al., 2018).

During the last decades, occupational exposure to agro-
chemicals has been demonstrated to affect the health of farmers 
(Alavanja et al., 2013) and their families (Alavanja et al., 2014; 
Carvalho, 2017; EEA, 2013; Yanggen et al., 2003) including 
children (Bassil et al., 2007) and spouses (Parks et al., 2016). 
These two groups (children and spouses) would be affected in-
directly, that is, via unintentional nonoccupational exposure. 
In children, cancer development is associated with parental 
exposure to pesticides at work (Bassil et al., 2007). Pesticide 
effects can be transmitted to offspring via a metabolic (geno-
toxic) response on the DNA or another molecule, such as a 
protein that may induce a mutation (Bonvallot et  al.,  2018; 
Farmer, 1997). For instance, in Vietnam, female floriculture 
workers exposed to pesticides had increased abortion rates, 
infant prematurity and congenital malformations in their 
offspring (Frazier,  2007; Weisenburger,  1993). Similarly, 
in Peru, malformations of mouth and palate, cardiovascular 
system, extremities, genital-urinary system, central nervous 
system and others, have been reported for children whose 
mothers were in contact and lived near pesticide fumigated 
fields during pregnancy (Gonzales-Tipiana et al., 2017).

Table 1 summarizes the observed effects of active ingre-
dients of pesticides as described by several authors. It was 
demonstrated that most of these compounds are deleterious 
to human health and the International Agency for Research 
on Cancer (IARC) has recognized a few as human carcino-
gens (Group 1) or probable human carcinogens (Group 2A) 
(Bonner & Alavanja,  2017). Table  2 presents a summary 
of these, based on information provided in IARC’s website 
(2018).

Global population could reach 9 billion on 2050 (United 
Nations, 2015), that is, almost 1.3 billion more than today's 
population calculated at 7.7 billion (Worldmeters, 2019). As 
most agricultural land is already in use, new agricultural land 
to produce additional food for the expanding population is 
very limited (Bonner & Alavanja,  2017; Carvalho, 2017). 
Thus, to addressing global food security for the growing pop-
ulation, the challenge is to achieve a sustainable food produc-
tion with the existing agricultural land. Current agriculture 
systems see pesticides as an unavoidable tool to protect crops 
and ensure good yields. However, due to collateral effects, 
many of classic synthetic pesticides, such as the organo-
chlorine compounds, were banned in most countries and the 
current wish is to abandon or replace the harmful synthetic 
pesticides. A selection of agro-pesticides with environment 
friendly and proven low (preferably none) nontarget toxicity, 
and improved pesticide application methods (e.g., nanopar-
ticles containing pesticides) as part of a tightly controlled 
integrated production system, may help farmers to maintain 
or increase crop yields without the awkwardness of synthetic 
pesticides. The implementation of integrated pest manage-
ment strategies would be the most straightforward way to 
achieve it, as explained in section 7.1.

4.2 | Chemical fertilizers

Chemical fertilizers became a routine component of agricul-
ture systems. However, these products might contribute also to 
environmental contamination and ecosystem damage. It was 
highlighted that contamination caused by chemical fertiliz-
ers occurs mainly through two ways: contamination with the 
desired components of fertilizers (nitrogen, phosphorus, and 
potassium) and contamination with the undesired elements 
present in fertilizers such as heavy metals (arsenic, cadmium, 
and uranium) (Schnug & Lottermoser,  2013). Both have a 
negative impact on the health of farmers, their families, food 
consumers, and environment. Further information on contami-
nation of food via heavy metals is provided in section 5.2.

Nitrogen (N) is fixed in soil by biological and physical 
processes as nitrate (NO3) and nitrite (NO2) forms mainly, 
which can readily be used by living organisms including food 
crops. Due to anthropogenic activities linked to food produc-
tion such as agriculture (e.g., soil fertilization, animal waste) 
and also combustion of fossil fuels, nitrogen is released in 
large amounts to the atmosphere and soils. Those N reactive 
forms are leached by rains and flooding episodes, and trans-
ferred to water bodies, thus contaminating groundwater and 
surface waters. Nitrogen contamination of water bodies in in-
tensive agricultural areas become the most extensive problem 
in developed countries with negative impacts on biological 
diversity, human health, and climate (Steevens, 2019), as dis-
cussed below.
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T A B L E  1  Associated effects of exposure of active ingredients of pesticides on human health

Research facts Active ingredient Observed effects References

Children with parents 
involved in pesticides’ 
management

Lindane
Parathion
Chlorophenol
Atrazine

Acute myelocytic leukemia 
(AML) via damage of genes 
responsible to encode enzymes 
to metabolize carcinogenic 
substances

Risk during mothers’ pregnancy

Infante-Rivard et al. (1999)
Flower et al. (2004)

Male 2,4-dichlorophenoxyacetic acid (2,4-D)
Lindane
DDT
Malathion
Endosulfan
Dichlone
Carbaryl
2,4-DB (2,4-D metabolite)
Glyphosate

Prostate, testis and male 
reproductive system cancers:

• Stimulation of cells 
proliferation

• Increasing localization of 
androgen receptor in the 
nucleus from the cytosol acting 
as tumor promoter

Kim et al. (2005)

Woman 2,4-D Breast cancer via suppression of 
luteinizing hormone*

Niehoff et al. (2016)

Meta-analysis diazinon Non-Hodgkin lymphoma via 
disruption of neuro-immune 
system

Hu et al. (2017)

Male and woman Organ-phosphates (OPs)
Benomyl and its metabolite thiocarbamate 
sulfoxide

Parkinson disease: associated to 
patients with variant genotype 
NOS1

Fitzmaurice et al. (2013)

Woman Maneb
Mancozeb

Rheumatoid arthritis
Thyroid diseases: inhibition of 
thyroid hormone production

Parks et at. (2016); 
Goldner et al. (2010)

Pastorelli et al. (1995)

Exposed agricultural 
workers in Colombia

Glyphosate Genotoxic effect via 
chromosomal damage

Non-Hodgkin lymphoma

Bolognesi et al. (2009)
Schinasi and Leon (2014)

Long-term study with 
farmers and pesticide 
applicators in USA

Pendimethalin (herbicide)
Dieldrin (insecticide)
Parathion (insecticide, miticide)
Chlorimuron-ethyl (insecticide)

Lung cancer incidence Bonner et al. (2016)

Adolescent applicators of 
pesticides in Egypt

Chlorpyrifos Deficits in neurobehavioral 
performance

Rohlman et al. (2016)

In vitro study with 
human cells and rats

Mancozeb (fungicide)
Ethylene-bis-dithiocarbamate (EBDC)

Inhibits thyroid hormone 
production

Pastorelli et al. (1995)

Long-term exposure at 
low doses

Paraquat
Dieldrin
Organochlorine
Organophosphates

Generation of Reactive Oxygen 
Species (ROS) causing 
neurotoxicity positively related 
to Alzheimer disease

Yan et al. (2016)

Meta-analysis Dichlorodiphenyldichloroethylene (breakdown 
product of DDT)

Hexachlorocyclohexane (lindane)
Chlordane
Hexachlorobenzene

Non-Hodgkin lymphoma Luo et al. (2016)

(Continues)
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Contamination of water by nitrogen has been associated 
to health problems such as methemoglobinemia (NO2 inter-
ference with the oxygen carrying capacity of the blood) in 
infants under 6 months of age (Ward et al., 2018), leukemia 
and other cancers at childhood (Mueller et al., 2004), but also 
at adulthood (Espejo-Herrera et al., 2015; Jones et al., 2016; 
Zeegers et al., 2006). Indeed, since 2010, the IARC classifies 
both NO3 and NO2 as Group 2A—probable human carcino-
genic (IARC, 2018). Despite the excess of N introduced in 
the ecosystems, it does not mean it is available to plants, and 
therefore, it does not automatically induce a significant in-
crease in crop yields (Steevens, 2019). Paradoxically, there 
is still a vast extension of lands where N scarcity in soils 
represents a serious limitation for agriculture production and 
thus for food security. Indeed, nitrogen distribution in soils 
could be used as indicator of the huge disturbance of Earth's 
nitrogen cycle at global scale (Steevens, 2019).

The issue turns critical as runoff waters from agricultural 
fields bring many dissolved molecules of nitrogen and phos-
phorus (P) into freshwaters and oceans. Both fertilizers stim-
ulate the growth of phytoplankton, which is decomposed by 
bacteria that need oxygen to act (aerobic), thus leading to eu-
trophication, that is, the creation of low oxygen concentration 
(hypoxia) areas (“dead zones”) that are unable to support life 
and, therefore, cause an obvious decrease of marine fisheries. 
Such “dead zones” are increasing in number and extension 
around the world (Breitburg et al., 2018). The Gulf of Mexico 
dead zone would be the largest one due to the discharges of 
the Mississippi river into the Gulf. From 1950s up to date, 

the Mississippi has triplicated the annual amount of nitrogen 
discharged, while phosphorus has doubled due to intensive 
agriculture in the river catchment (Christensen, 2019).

In face of these effects, it becomes crucial to manage, 
reduce and control the release of agrochemicals into the 
environment to ensure environmental preservation and the 
potential for food production.

5 |  CHALLENGES TO FOOD 
SAFETY: CONTAMINANTS AND 
POLLUTANTS

Agrochemicals, as seen above, have been instrumental to 
increase food production although with collateral effects on 
farmer's health and consumer's health through the impact of 
chemical residues on human and environment health. Other 
chemicals may also contaminate food and have an impact on 
human health and must be referred herein: mycotoxins and 
heavy metals.

5.1 | Mycotoxins

Food quality, in terms of safety and nutritional aspects, is a 
key concern. Food is a source of macro and micronutrients 
and bioactive substances for human consumers but can also 
be an optimal substrate for living organisms, such as micro-
scopic fungi, which are ubiquitous in the environment. Some 

Research facts Active ingredient Observed effects References

Couples (men and 
women) from Shangai, 
China

Organophosphate and Pyrethroid 
pesticides metabolytes assessed in urine 
samples [dimethylphosphate (DMP), 
dimethylthiophosphate (DMTP), 
diethylphosphate (DEP), diethylthiophosphate

(DETP), dimethyldithiophosphate (DMDTP) 
and diethyldithiophosphate (DEDTP)] and 
three metabolites of PYRs [3-phenoxybenzoic

Acid (3PBA), trans/cis−3-(2,2-
dichlorovinyl)−1-methylcyclopropane1,2-
dicarboxylic acid (TDCCA and CDCCA, 
respectively

Couple fertility adversely 
affected, assessed as time to 
pregnancy (TTP)

Hu et al. (2018)

Two generations tests 
with rats, dogs and mice

Spinosad Endocrine disruptor: toxic for the 
reproduction, adverse effects 
on multiple organs including 
endocrine organs (thyroid, 
thymus, pancreas, adrenals, 
epididymides, ovaries, uterus)

Arena et al. (2018)

Japanese male 
workers exposed to 
ortho-toluidine

Ortho-toluidine (precursor to the herbicides 
metolachlor and acetochlor)

Bladder cancer. Patients did show 
high rates of gross hematuria 
(70%) and cystitis (70%) in their 
past medical histories.

Nakano et al. (2019)

T A B L E  1  (Continued)
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microscopic fungi produce toxic substances called mycotox-
ins, which are considered secondary metabolites excreted in 
certain stages of their growth. During food production and 
storage, extrinsic factors such as temperature, humidity and 
the presence of oxygen and others can favor fungi prolifera-
tion and thus contamination of food with mycotoxins (Bhat & 
Reddy, 2017). Several mycotoxins embody a serious health 
hazard to human consumers. For example, wheat grains can 
be contaminated by mycotoxins, mainly deoxynivalenol or 
DON, produced by the fungus Fusarium graminearum and 
other fungi species (Guzman et  al.,  2016), and such wheat 
derived products are toxic to humans. Thus, selecting varie-
ties with resistance to mycotoxins-producing fungi has be-
come a priority of breeding programs and research agencies 
worldwide.

Mycotoxins are released in ppm or ppb concentrations but 
are still able to generate health problems to consumers due 
to their high toxicity (De Vicente, 2020; Quiles et al., 2016). 
Therefore, the monitoring of mycotoxins in the food chain 
is essential to ensure public health, quality of life and hon-
est international trade (Chauhan et al., 2016; Lu et al., 2016; 
Ortiz, 2020). Indeed, several accreditation and certification 
programmes have been developed to control and certify 
food safety (Table  3). Good Agricultural Practices (GAP), 
Hazard Analysis and Critical Control Points (HACCP), 

ISO (International Standardization Organization) and the 
FSMS (Food Safety Management Systems) certifications, 
among others, followed by the application of Good Hygienic 
Practices (GHP) and Good Manufacturing Practices (GMP), 
are examples of those.

To ensure food safety it is needed to avoid biological, 
chemical, and physical hazards at all stages of the food chain, 
from food production to preparation, packaging, and even dis-
tribution processes. A collection of all standards, guidelines 
and codes of practice adopted in food production, process and 
management is compiled in the Codex Alimentarius (FAO/
WHO,  2018). With the increase of international trade and 
food market globalization, application of these procedures is 
absolutely needed and aim at having a large impact on food 
safety at international level (Van Boxstael et al., 2013).

5.2 | Heavy metals

Likewise, food contamination by heavy metals in crops has 
become an important concern. A heavy metal (HM) refers to 
any metallic element with relatively high-atomic density that 
is biologically toxic or poisonous even at low concentration 
(Lenntech, 2004). This term includes Cadmium (Cd), Copper 
(Cu), Zinc (Zn), Nickel (Ni), Cobalt (Co), Chromium (Cr), 

Active ingredient IARC classification Observed effects References

Ortho-toluidine Group 1—Human 
carcinogenic

Bladder cancer IARC (2012)

Lindane Group 1—Human 
carcinogenic

Immuno suppressive 
effects

IARC (2016)

DDT Group 2A—Probable 
human carcinogenic

Immuno suppressive 
effects in human cells

Increase of oxidative 
stress in human 
peripheral blood 
mononuclear cells.

Stimulation of human 
colon cancer and liver 
cancer cell proliferation 
in vitro

Estrogenic effects and 
androgenic-receptor 
antagonism in human 
cells in vitro

IARC (2016)

Malathion Group 2A—Probable 
human carcinogenic

DNA and chromosomal 
damage in humans 
through its bioactive 
metabolite malaoxon

IARC (2017)

Diazinon Group 2A—Probable 
human carcinogenic

Chromosomal damage IARC (2017)

Glyphosate Group 2A—Probable 
human carcinogenic

Chromosomal damage IARC (2017)

T A B L E  2  Active ingredients of 
pesticides recognized as affecting negatively 
human health, according to the International 
Agency for Research on Cancer (IARC)
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https://haccpmentor.com/haccp/haccp-certification/
https://haccpmentor.com/haccp/haccp-certification/
https://www.globalgap.org/uk_en/index.html
https://www.globalgap.org/uk_en/index.html
https://ispe.org/initiatives/regulatory-resources/gmp
https://ispe.org/initiatives/regulatory-resources/gmp
https://www.rainforest-alliance.org/business/solutions/certification/agriculture/
https://www.rainforest-alliance.org/business/solutions/certification/agriculture/
https://leafuk.org/farming/leaf-marque
https://leafuk.org/farming/leaf-marque
https://ec.europa.eu/info/food-farming-fisheries/farming/organic-farming/organics-glance_en
https://ec.europa.eu/info/food-farming-fisheries/farming/organic-farming/organics-glance_en
https://ec.europa.eu/info/food-farming-fisheries/farming/organic-farming/organics-glance_en
https://www.oekolandbau.de/en/bio-siegel/
https://www.sgs.com/en/agriculture-food/commodities/audit-certification-and-verification/certification/non-gmo-certification
https://www.sgs.com/en/agriculture-food/commodities/audit-certification-and-verification/certification/non-gmo-certification
https://www.sgs.com/en/agriculture-food/commodities/audit-certification-and-verification/certification/non-gmo-certification
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Lead (Pb), Mercury (Hg), Arsenic (As) (Khan et al., 2008; 
Yadav, 2010) and also Tin (Sn) and Vanadium (V) (Su, 2014). 
HMs can be highly hazardous to organisms, and HM concen-
trations and toxicity can be enhanced through the food chain. 
Cr, As, Cd, Hg and Pb are the most potentially harmful HM 
for mammals due to their strong affinity for sulfur (S), ena-
bling HM binding to enzymes that control metabolic reac-
tions via thiol groups (–SH). The resulting sulfur-metal bonds 
impede the adequate performance of the bonded enzymes, 
causing deterioration of health and also death of individu-
als (Baird & Cann, 2012; Rusyniak et al., 2010). Hexavalent 
forms of Cr and As have been proved to be carcinogens, 
while Cd causes a degenerative bone disease, and Hg and 
Pb damage the central nervous system (Baird & Cann, 2012; 
Rusyniak et al., 2010).

Agricultural soils in many parts of the world are con-
taminated by HMs (Su,  2014) resulting from atmospheric 
deposition, irrigation with sewage, deposition of dust from 
smelters, disposal of industrial waste, long-term use of pesti-
cides and fertilizers (Duxbury et al., 2003; Khan et al., 2008; 
Passariello et  al.,  2002; Schwartz et  al.,  2001; Zhang 
et al., 2011), proximity to roads with fumes from leaded gas-
oline (Khan et al., 2008; Love, 1998) and dust produced by 
automobile tire wear (Khan et al., 2008). In plants, the uptake 
of heavy metals depends on the root and foliar efficiency of 
plant species in absorbing (or excluding) metals, and accu-
mulation of heavy metals in plant structures may have toxic 
effects and lead to reduced crop yields (Rattan et al., 2005). 
For instance, arsenic toxicity in rice is known to cause re-
duced growth and sterility of florets in panicles (Duxbury 
et  al.,  2003). Furthermore, accumulation of HMs in plants 
may transfer them to humans. For example, soil contamina-
tion by Cd, Pb, Zn, and Cu and the use of HM polluted water 
for irrigation (Khan et al., 2008; Nan & Zhao, 2000) leads 
to accumulation of these metals in wheat (Triticum aestivum 
L.), rice (Oryza sativa), radish (Raphanus sativus L), maize 
(Zea mays), green cabbage (Brassica juncea L), spinach 
(Spinacia oleracea L), cauliflower (Brassica oleracea L), 
turnip (Brassica napus), and lettuce (Lactuca sativa L) which 
poses health risks to consumers.

In some regions, such as Bangladesh, occurrence of 
high concentrations of arsenic (As) of natural origin in the 
groundwater has led to a widespread human exposure to 
As through drinking water and rice consumption (Duxbury 
et  al.,  2003; Karim,  2000; Paul et  al.,  2000). In different 
parts of the world, especially in Asian countries (Hassan 
et al., 2017) and in the USA (Potera, 2007; Schilling, 2016), 
arsenic has been found also in rice grains but originated 
from other sources (Williams et al., 2005, 2007; Zavala & 
Duxbury,  2008). In these cases, high As contents in rice 
were due to the high As content in soils resulting from 
past use of As a pesticide (Schilling,  2016). USA has 
been the world's leading user of arsenic, with about 1.6 

million tons used in agriculture and industry since 1910 
(Schilling, 2016). Although As was banned in 1980s, res-
idues still linger on in agricultural soil today. High-arsenic 
values have been found also in rice grown in soils where 
cotton used to be grown with the help of frequent treatments 
with arsenical pesticides to combat the cotton boll-weevil 
beetle (Schilling, 2016).

As a consequence of the widespread arsenic contami-
nation of agriculture soils in USA, inorganic arsenic has 
been found also in baby food and rice-based food products 
for 4–6  month infants and young children (Signes-Pastor 
et al., 2017). Ingestion of these contaminated foods may have 
an impact on their neurological, cardiovascular, respiratory 
and metabolic development throughout lifespan (Meharg 
et al., 2008; Rintala et al., 2014; Signes-Pastor et al., 2017).

The development of treatments for HM accumulation 
and toxicity in humans is currently under research and nat-
ural substances such as the milk thistle seed extract, dande-
lion leaf extract, garlic bulb (Allium sativum), cilantro leaf 
extract, and l-glutathione, N-Acetyl-l-Cysteine are being 
tested as chelating agents to eliminate arsenic from the 
body (Schilling, 2016).

Remediation of soils contaminated by HMs is difficult 
and it may take one or two hundred years to reach a signifi-
cant decrease in soil contamination (Su, 2014; Wood, 1974). 
Hence, the lesson to learn here is the need to apply the 
Precautionary Principle, which is defined as discretionary 
decisions and/or actions on issues considered uncertain due 
to the lack of extensive scientific knowledge on the matter, 
thus emphasizing caution and sound scientific evidence be-
fore leaping into actions that may result harmful. Thus, in 
case of introducing new chemicals in agriculture systems, the 
existing tiered protocols and robust methodologies to assess 
their genetic and toxic effects should be applied as a basis for 
their licensing (EFSA, 2016).

6 |  ENVIRONMENTAL AND 
CONSUMER SAFETY CHALLENGES

Agrochemicals for crop protection include a variety of or-
ganic compounds, mostly synthetic, used against pests and 
diseases. Soon after their introduction in the 1940s, the gen-
eralized application of pesticides was shown to have collat-
eral effects in nontarget species, such as pollinating insects, 
birds, and aquatic species, for example, causing massive 
shrimp and fish kills. The book «Silent Spring» by Rachel 
Carson published in 1962 was an early warning of the envi-
ronmental impact of pesticides (Hester & Harrison, 2017), 
such as the organochlorine pesticides, due to their massive 
use and high persistency in the environment, causing re-
sistance of pests and accumulation and harmful effects on 
nontarget biota and humans (Alavanja et  al.,  2013, 2014; 
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Carvalho, et  al.,  2009). Furthermore, after pesticide appli-
cation, often it was observed the formation of degradation 
products and metabolites sometimes more toxic than their 
parent compounds, such as, for example, DDE formed from 
DDT, and endosulfan-sulfate formed from endosulfan, thus 
evidencing the need for tighter eco-toxicity testing and li-
censing processes of chemicals before their commercial 
release (Carvalho, et al., 2009). These facts led to an inter-
national environmental treaty, the Stockholm Convention 
on Persistent Organic Pollutants (POPs), signed in 2001 and 
effective from May 2004, aimed at the elimination or restric-
tion of production and use of POPs.

Since then, POPs have been gradually replaced by other 
chemicals from the groups of organophosphorus and carba-
mates, believed to be less persistent in the environment, less 
bio accumulative and less toxic (Bonner & Alavanja, 2017; 
Carvalho et al., 1997). However, further studies revealed that 
these substances (organophosphorus and carbamates) were 
neither rapidly degraded nor “environment friendly” as ex-
pected. Instead, they were shown to persist in soils, and reach 
aquatic environments to impact on aquatic fauna (Carvalho 
et  al.,  1997, 2003). For example, chlorpyrifos used to pro-
tect banana plantations from pests was revealed to be toxic 
to aquatic invertebrates at concentrations as low as 30 ng/L. 
Later on, new agrochemicals, such as glyphosate, chloram-
phenicol, and pharmaceutical residues including antibiotics, 
have also been reported in many aquatic ecosystems with 
toxic impact in biota, including fishery resources. Residues 
of most agrochemicals and antibiotics are these days found 
in surface waters and crops especially in North-America 
and Europe where such residues currently are closely mon-
itored (Carvalho, 2017; González et al., 2019; IARC, 2017; 
WHO, 2010).

A significant challenge to agricultural production (and 
including also meat and fish production), is how to produce 
more food without contamination by harmful chemicals. 
Desirably, less chemical residues should be present in food 
when it arrives at the consumer's dish, and (ideally) any res-
idue should neither contaminate the environment nor harm 
other species or degrade ecosystems’ health and services 
(e.g., Carvalho, Villeneuve, Cattini, Rendón, et al., 2009; 
Carvalho, Villeneuve, Cattini, Tolosa, et al., 2009). Thus, 
applying pesticides becomes a key activity that needs im-
proved control. In many countries, the access to agrochem-
icals and application methods is still poorly controlled and 
many farmers misuse the chemicals. Hence, reinforce-
ment of education about the harmful effects of exposure 
to such chemicals in the population in general, and espe-
cially in farmers, becomes essential to enhance food safety 
(IARC, 2016).

Indeed, it is critical that food producers and manufactur-
ers are responsible for the quality and safety of their products 
placed on the market (Baron & Brule, 2016), as specified in 

the 93/43/EEC Directive of the European Union (EU). To 
this end, the European Food Safety Authority (EFSA) over-
sees the food safety for consumers based on the toxicity of 
pesticides, assessing and ensuring that their residues are 
under the maximum residue limits (MRL) allowed in food. 
According to the Regulation of the European Community 
(EC) 396/2005 and amendments, EU’s legislation covers 
the inspection of MRL of around 1,100 pesticides currently 
or formerly used in agriculture in or outside the EU, cover-
ing the safety of all consumer groups (e.g., babies, children, 
vegetarians, etc.). Furthermore, in case a pesticide is not 
specifically mentioned in the legislation, for consumer's 
protection EFSA assumes as a default MRL value the con-
centration of 0.01  mg/kg (European Commission,  2018). 
Additionally, the EU has adopted new policies to con-
trol industrial chemicals (REACH initiative) aimed at to 
achieve improvements in human life quality (EEA, 2013; 
EFSA, 2016).

Thus, producing and applying pesticides at last becomes 
an activity in the spotlight of regulatory, public health, and 
environmental authorities which seems the appropriate path-
way for a reduced and controlled use of chemicals in order to 
protect humans and environment (Figure 1).

7 |  ACHIEVING SUSTAINABLE 
AGRICULTURE: THE BIGGEST 
CHALLENGE

7.1 | Integrated pest management

Agrochemicals (pesticides, growth regulators and fer-
tilizers) have been widely used since their introduction 
in conventional food production (Peshin et  al.,  2009; 
Stoetzer, 2016). It has resulted in the development of pes-
ticide resistance of target pests, harm to nontarget spe-
cies such as predators, parasitoids and pollinators, water 
contamination and overall ecological degradation, food 
contamination and occupational and public health prob-
lems (Palacios-Lazo et  al.,  2003; Peshin et  al.,  2009; 
Stoetzer, 2016). Consequently, due to the lack of pest-re-
sistant cultivars, nonadoption of control measures, and no-
navailability of effective bio-control agents, new resistant 
pests have developed on several crops, while the effective-
ness of a number of insecticides has decreased (Palacios-
Lazo et al., 2003; Peshin et al., 2009; Stoetzer, 2016).

The biggest failure of pesticides to control pests was 
reported for 1956 in cotton crop in Peru, Cañete Valley 
(Stoetzer, 2016), and other documented cases in Sudan and 
other places (Peshin et  al.,  2009). In Peru, cotton yields 
dropped from about 500 to 365 kg/ha, due to disappearance 
of natural enemies of pests due to insecticide applications, 
thus allowing pesticide resistant pest populations to continue 
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to grow. To cope with this, the Farmers’ Association of the 
Cañete Valley organized an integrated pest control (IPC) 
program with the support of the Government, which in-
cluded a ban on the use of synthetic organic pesticides, 
reintroduction of beneficial insects, crop diversification 
schemes, planting early maturing varieties and the destruc-
tion of cotton crop residues right after the season (Peshin 
et  al.,  2009). Consequently, farmers were able to reduce 
the use of synthetic pesticides drastically, and the natural 
biological control of pests was restored and strengthened 
by the release of Trichogramma sp. wasps, lady beetles 
and a carabid beetle (Stoetzer, 2016). With these actions, 
pest problems declined dramatically, and pest control costs 
were substantially reduced (Hansen & Geyti,  1987). Due 
to its success, cotton-IPC was expanded to all coastal val-
leys of Peru, and abroad, under the term of “Integrated 
Pest Management” (IPM) that means the integration of 
various control measures, where the least hazardous pesti-
cides are used and only as a last resort, ensuring that crop 
loss caused by pests remain below the economic threshold 
(Stoetzer, 2016).

Nowadays, several decades after its first enunciation, 
IPM is recognized as one of the most robust concepts 
arisen in the agricultural sciences since the beginning of 
the second half of the twentieth century (Kogan, 1998) and 
the base to achieve a sustainable and healthier food pro-
duction (Pretty & Bharucha, 2015). Based on the analysis 
of 85 IPM projects implemented in Asia and Africa over 
the past 20 years, some authors have stated that integrated 
agriculture allows a reliable transition to zero pesticide use 
(Pretty & Bharucha, 2015). Furthermore, integrated agri-
culture has been proposed as the most appropriate system 
to manage weeds in a sustainable way as an alternative to 
herbicides (Korres, 2019) and more specifically to glypho-
sate (PAN, 2018), as this latter would eventually disappear 
from the market, due to its carcinogenic and genotoxic 
risks (IARC,  2018). Despite that, to succeed, IPM needs 
to make use of cultivars with high resilience to stress, and 
implement pest “managing” instead of “controlling” proce-
dures (Peterson et al., 2018).

The main advantages of IPM agriculture have been 
stated as: (a) IPM yields are as high as in conventional 
agriculture. In comparison, yield reductions in organic 
agriculture production (OAP) average 10%–15% relative 
to conventional agriculture; (b) IPM reduces drastically 
the use of agrochemicals (Stoetzer, 2016), therefore, IPM 
products are available on the market sometimes certified 
as containing no-detectable residues (NDR) of pesticides; 
(c) IPM prices are similar to that of conventional agricul-
ture, and therefore, reachable to all publics. In contrast, 
OAP’s high-yield losses are compensated by lower input 
costs and higher gross margins (Lotter, 2003), which also 

means that OAPs are not available to all due to its high 
price (Gerehou, 2015).

7.2 | Challenges related to consumers’ food 
preferences

Negative impacts of agrochemicals on human health, the 
environment, and animal welfare have driven an increasing 
demand for certified OAP worldwide (Baranski et al., 2014; 
Kyrylov et al., 2018; Oughton & Ritson, 2007; Reganold & 
Watcher,  2016; Yiridoe et  al.,  2005), despite their higher 
prices, compared to conventional and IPM products. 
Consumers believe that, additionally to their “nonresidues” 
advantage, OAPs are more nutritious (Baranski et al., 2014; 
Yiridoe et  al.,  2005) and tasty (Lotter,  2003; Yiridoe 
et  al.,  2005) than those from conventional agriculture, and 
this believe has sustained the increase of OAP sales and the 
expansion of organically farmed land in recent years (Willer 
& Lernoud,  2016). For example, only in the USA, since 
1990 the OAPs sales increase 20%–25% per year (Baranski 
et al., 2014; Lotter, 2003; Oughton & Ritson, 2007; Yiridoe 
et al., 2005). However, there is no scientific evidence on the 
nutritional advantage of organic food compared to nonorganic 
and conventional food, as the concentration of potentially 
health-promoting (e.g., antioxidants, (poly)phenolics, vita-
mins and certain minerals) and potentially harmful (e.g., Cd 
and Pb) compounds (Brandt et al., 2011; Cooper et al., 2011; 
Dangour et al., 2009; Smith-Spangler et al., 2012) do not dif-
fer significantly in comparative studies (OAPs vs. conven-
tional). However, some authors pointed out that statistics 
and procedures used in these studies remain unclear and a 
re-assessment should be made (Baranski et al., 2014; Bourn 
& Prescott, 2002).

Compared to foods grown conventionally, OAPs have 
proved to contain only one-third of the concentrations of 
pesticide residues (Baker et al., 2002; Baranski et al., 2014), 
while in IPM foods such concentrations range between 
those in organic and in conventional grown foods (Baker 
et al., 2002; Pussemier et al., 2006). Notwithstanding, OAPs 
are not completely free of residues of synthetic pesticides. 
Most residues of pesticides in OAPs come from environmen-
tal contamination by former pesticide use, or by “drift” from 
adjacent conventional nonorganic farms (Baker et al., 2002; 
Baranski et al., 2014; Pussemier et al., 2006). Additionally, 
OAPs allow to use biopesticides, which are biocides based 
on the pesticidal metabolic products of living organisms, 
which tend to be target-specific, without developing resis-
tance to their effects in the target pest (EPA, 2006; Goettel 
et al., 2001). Biopesticides have been stated to be innocuous 
to air and water quality, less destructive to beneficial fauna 
and less acutely toxic to mammals than conventional pesti-
cides (Quarles, 2011). However, their high-potential risk to 
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humans has been adverted during the last decade. For exam-
ple, the active ingredient spinosad (allowed for OAP produc-
tion in the EU), has been recently shown to act as endocrine 
disruptor in mammals, as announced by the EFSA (Arena 
et al., 2018).

Therefore, careful toxicity testing and control need to 
be applied to all foodstuffs, regardless of how they are pro-
duced (González et al., 2019), while the potential risks of 
biopesticides to the environment, human health, and ani-
mal welfare should be also simultaneously and extensively 
investigated.

8 |  EMERGENT CHALLENGES 
AND POSSIBLE SOLUTIONS TO 
ACHIEVE FOOD SECURITY

This section describes some possible options to address rel-
evant food security issues, considering them simultaneously 
as solutions and challenges, because of two main reasons: 
(a) their associated potential risk, mostly unknown at present, 
and, (b) the degree of complexity to be applied, which would 
depend on the specific characteristics of the area, country or 
region of application in order to assure access, availability 
and sustainability of food production. For example, in devel-
oping countries, there may be additional social and/or tech-
nical constraints, which are summarized in Table  4, while 
proposing possible solutions to achieve this goal.

8.1 | Climate change and social phenomena 
relationship

Despite several reports showing that globally much more 
food is produced and supplied than in the past, there is still 
a big gap between current food needs and food production. 
This gap must be filled in order to feed the global popula-
tion and support an active and healthy life worldwide. It has 
been pointed out that in some regions, climate change events 
(droughts, flooding, heat and cold waves, etc.) through con-
straining food production and supply bring about concomi-
tant social phenomena, such as wars and human migrations, 
among others (Carvalho, 2006).

Borlaug (2000) estimated that food crop production, es-
pecially cereals, must increase substantially, by 50% to 2030 
and 70% by 2050. Furthermore, if society continues on its 
current dietary trajectory Berners-Lee et al. (2018) recently 
estimated that the increase in edible crops required by 2050 
will be of 119%. Therefore, beyond satisfaction of food needs 
that must be envisaged within the food security concept 
(FAO, 1996), also current agriculture practices need to adapt 
to climate change. To achieve this goal, a turnaround in re-
search is needed: agronomists should make use of the novel 

crop management techniques, and plant breeders should make 
full use of genetic diversity contained in landraces and heir-
loom varieties that are still cultivated by small-scale farmers 
(Dempewolf et al., 2014) and wild plant species closely re-
lated to food crops (Guarino & Lobell, 2011).

This effort to increase agriculture production could include 
more widespread irrigation of land already committed to ag-
ricultural production but currently under rainfed conditions. 
This requires high investments on irrigation infrastructure 
that in some cases may foster the destruction of natural hab-
itats, deforestation and carbon storage, which, in addition to 
the rising greenhouse gas concentrations and climate change, 
might still further impact food and water systems. This inter-
connection of things renders extremely necessary to consider 
the implementation of water-saving agriculture technologies 
(detailed in section 1) focusing on food-energy-water as an 
interconnected system (Winchester et al., 2018) and its social 
implications.

8.2 | Food waste

In the pathway to improve food security, losses of produced 
food must also be taken into account. However, reducing food 
losses is not a simple task, and to further increase production 
either by 70% or even 119% (to meet food demands on 2050) 
is not easy either (Berners-Lee et al., 2018). Most people ig-
nore the magnitude and consequences of food waste resulting 
from current commercial pathways, resource pressure, on top 
of crop losses (WRAP, 2009). Gustavsson et al. (2011) cal-
culated that the proportion of cumulative losses of food (lost 
or wasted) in the chain from production to consumption is ap-
proximately one-third of the total food produced. Similarly, 
Alexander et al. (2017) calculated that the global agricultural 
dry biomass consumed as food is just 6%, and that up to 44% 
of crop dry matter is lost prior to human consumption.

High percentages of food produced are lost due to dam-
age during transportation and to poor conditions during food 
storage. Some of the produced food is jeopardized due to lack 
of adequate, proper handling and conservation measures (re-
frigeration, bacterial or even other contamination) before it 
reaches the final consumer. Therefore, application of accred-
itation and certification programs to assure a proper manage-
ment of food products, with a circularity focus—to achieve 
recycling of resources and eliminate waste at all levels of the 
food chain—must be envisaged at all steps of the food chain.

8.3 | Integrating agriculture, landscape and 
human well-being

Environment preservation efforts need to integrate agri-
culture within the wider landscape, to reduce the negative 
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T A B L E  4  Summary of the main issues to be solved by developing countries in the pathway to achieve food security

Related area Issue Consequences Possible solution

Resources 
availability

Unequal and/or 
patchy distribution of 
(financial) resources

Official organizations unable to perform 
appropriate research and extension 
activities. Hence, agriculture research is 
mostly performed by private industries 
that restrict the access to proprietary 
technologies and limit the expansion 
of the research (Tiwari, 2017). Lack of 
official extension and advisory services 
promotes the assumption of this task 
by agrochemical companies focused 
in selling their products (pesticides, 
fertilizers, etc.) instead than providing 
relevant assistance to farmers (Beyer 
Arteaga, Rodríguez Quispe, Collantes 
González, & Joyo Coronado 2017).

Proper allocation of financial resources by 
governments to allow R + D + I. Whole system 
needs to change otherwise the agricultural 
sector (and others) will soon face a critical 
stage of survival.

Lack of proper 
infrastructure and 
equipment

Deficit of technological–scientifical 
equipment and facilities due to their high 
cost. It constitutes the main barrier for 
skilled researchers trained in renowned 
institutions to apply the new knowledge 
acquired, often causing a "flight of 
talents" to developed countries.

Similar to above, promoting Public–Private-
Partnership (PPP) to strengthen overall capacity 
through an equitable effective collaboration 
to share technology, skills and knowledge. 
Partnership between public and private sectors/ 
developed and developing countries can boost 
the technology potential to achieve food 
security.

Low purchasing power 
of (small-scale) 
farmers

Scarce or null access to information, 
technology and training to facilitate 
decision-making and agronomic 
management, turning farmers vulnerable 
to market preferences, climate, 
information management, among others 
factors.

Development of social programs and policies 
aimed in allowing farmers access to 
recirculating financial aids. Increase farmer's 
physical and human capital by improving 
their access to resources, technology, and 
information.

Education Illiteracy and/or low 
educational level of 
farmers

Restricted or nonaccess to information, 
causing in turn null or limited capacity-
building and knowledge-transfer, and 
consequently, null technology adoption.

Proper allocation of financial resources by 
governments to allow development of a proper, 
high-quality education program at all levels, 
emphasizing in low-accessible rural areas. 
Literacy training for rural communities and 
increased education (with emphasis in women) 
will increase today's and future's productivity.

Old-fashioned and poor 
training of scientists 
and technicians

Vulnerability to climate change 
driving food insecurity due to scarce 
development of crops adapted to 
environmental stresses. Production does 
not meet the quality level required by the 
market and industry.

Promote valuable partnership with renowned 
organizations with availability of analysis tools 
and data management, via sustainable capacity-
building and knowledge transfer programs. 
International collaboration can be useful only 
with a proper legislation system in order to 
regulate collaborative R + D + I activities, for 
example, exchange of genetic material.

Land tenure Small property 
(representing over 
80% of the total 
agricultural units in 
developing countries)

Small-scale farming, joined to lack of 
extension and advisory services among 
other issues, limits participation of 
small-scale farmers in the market-share, 
thus reducing income generation and 
rentability

Promote social processes that emphasize 
association and community participation 
to enhance and stabilize yields, as well as 
ecological services such conservation of 
biodiversity, soil and water restoration and 
conservation, integrated pest management 
mechanisms, among others (Altieri & 
Rosset, 2002).

(Continues)
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impacts of lack of food (and poverty) and associated social 
conflicts (Carvalho,  2006; Lundqvist,  2010). This can be 
seen as part of the strategies needed for a better management 
of the planet at global scale, but there are other dimensions in 
this issue, in particular in industrialized countries and urban 
environments.

Recent population trends show that more and more people 
live in large cities, mostly in coastal areas, and far from rural 
and agriculture areas. As a consequence, human behavior is 
changing and mental diseases and sufferance resulting from 
social changes have taken a growing share of human diseases.

Studies have demonstrated that being more in contact 
with nature promotes mental, psychological and physical 
well-being, thus improving quality of life in a way that 
cannot be reached by other means (Abraham et  al.,  2010; 
Maller et  al.,  2006; Russell et  al.,  2013). For instance, it 
has shown to promote less-aggressive behavior and reduce 
crime (Kuo & Sullivan, 2001); promote social integration 
(Kweon et al., 1998) and increase self-confidence and per-
sonal or community identity (Horwitz et al., 2001; Maller 
et al., 2006). Also, access to a naturally integrated landscape 
promoted physical well-being, such as enhancing recovery 
after surgery (Ulrich,  1984) and lowering blood pressure 
(Lohr & Pearson-Mims,  2006); relieving stress (Leather 
et al., 1998); increasing positive mood (Maller et al., 2006) 
and reducing mental fatigue (Staats et al., 2003). Similarly, 
a study based on grey literature by Reed et al. (2017) sug-
gested that landscape approaches constitute a powerful 
attempt to reconcile conservation and development and im-
prove social capital, enhance community income and em-
ployment opportunities while simultaneously reducing land 
degradation and conserving natural resources. However, 

the authors highlighted that comprehensive data on the so-
cial and environmental effects of these benefits still remain 
incomplete.

This integration of agriculture, landscape and human 
settlements could be a ground of improved social justice, 
enhanced well-being, and a more balanced way of living 
compared to the current abandon of rural areas, such as ob-
served in Asia and America, and human migrations from 
Africa.

8.4 | Understanding and implementing 
supportive technologies to crop breeding

8.4.1 | Plant breeding leverage

Crop breeding started soon after the rediscovery of 
Mendel's laws at the beginning of the twentieth century 
(Mattoo & Handa,  2017). Originally, the application of 
classical genetics principles through visual selection is 
defined as conventional plant breeding, usually based on 
yield. However, yield, quality and nutrient and water use, 
are all multigene traits whose complexity hinders breed-
ing efforts (Parry & Carmo-Silva, 2016). Therefore, con-
ventional breeding needs the use of indicative plant traits 
which in turn need to be fast, easy, cheap to measure, and 
consistent (Monneveux et  al.,  2012). Application of im-
agery and spatial data analysis gathered via remote-sensing 
technologies, have demonstrated their potential to reveal 
those traits in a noninvasive and nondestructive manner 
(Chávez et al., 2012). During the last decade, progress in 
plant breeding by combining bioinformatics, modelling 

Related area Issue Consequences Possible solution

Legal framework Lack of legal 
framework to enhance 
and protect food 
security

Food security unattended due to 
corruption and (economic) conflicts of 
interests. Transboundary movement 
of products whose innocuity needs to 
be proved—agrochemicals, transgenic 
products and seeds, among others.

Develop a proper legislation system in bio-
safety and germplasm protection in agreement 
with evolving international policies. 
Regulate the trade, management and use of 
agrochemicals and biotechnological products 
(GMO, mutagenic seeds and produce, etc.) to 
ensure food security and maintain a healthy 
competitiveness of the own production in the 
international market.

Policy making & 
implementation

Constraints in 
developing and 
implementing proper 
policies due to high 
level of corruption, 
short term gains 
or inappropriate 
channelling to address 
key aspects.

Key food security aspects unattended due 
to corruption and (economic) conflicts 
of interests, for example, bio-safety and 
(native) germplasm protection.

Lack of regulation on agrochemicals 
undermines population health due 
uncontrolled sale, indiscriminate use and 
management by farmers, and consumers’ 
exposure to residues in food.

Help official breeding entities to stabilize and 
protect their germplasm (via Plant Variety 
Protection) from transnational seed companies.

Regulate and monitor residues of agrochemicals 
and pollutants in food for local consumption 
in accordance with international standards, 
via certification bodies. Implementation of 
a farming supportive program including 
integrated pest management strategies.

T A B L E  4  (Continued)
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and analytical (mathematical/physics/statistical) work in 
phenotyping—whose basic concept can be summarized 
as the description of individuals based on their observable 
traits—, biotechnological tools in genotyping—determina-
tion of genetic differences by examining the individuals’ 
DNA sequence to reveal the alleles inherited from their 
parents—and other (novel) approaches, has proven—at 
experimental level—its feasibility to accelerate the selec-
tion of desirable traits in crops, thus shortening the time 
to obtain improved cultivars within a (conventional) crop-
breeding program (Thiry et al., 2016).

Merging technologies for high-precision crop 
phenotyping in crop breeding
Novel technological approaches offering the feasibility of 
performing nondestructive analysis, have contributed tre-
mendously to accelerate crop breeding. Remote-sensing 
technology (visible, near-infrared, thermal radiation/image-
based analysis) in phenotyping allows for monitoring and 
detecting biotic (pests, diseases, etc.) and abiotic stresses 
(drought, nutrition deficiencies, etc.) in crops before symp-
toms are visible, and therefore, selecting those genotypes 
with outstanding performance, at small (individual) and large 
scale (high throughput). Successful results at the experimen-
tal phase in potato and wheat have been achieved with the 
combination of the remote-sensing-based early-stress detec-
tion (Chávez et al., 2010, 2012; Chávez et al., 2009) and high 
productivity and resilience score indices (Thiry et al., 2016) 
for high-throughput selection of high-yielding genotypes 
with resistance/resilience to biotic and abiotic stresses (data 
not shown). An additional advantage of these merged tech-
nologies would be the possibility to react before the stress 
extends over the whole field (Chavez et  al.,  2012) and the 
application of IPM, thus contributing with sustainability of 
agriculture.

8.4.2 | Genomics and development of new 
breeding techniques

The development of DNA technologies and molecular tools, 
genome sequencing and applied genomics, allowed the ge-
netic basis for traits of agronomic importance to be deter-
mined, which dramatically enhanced the efficiency of plant 
breeding—thus raising the commonly called new breeding 
techniques (NBT)—, either via cisgenesis (artificially in-
troducing a recessive resistance gene from wild relatives to 
crops) or transgenesis (introducing an exogenous gene—
called a transgene—into a living organism so that the or-
ganism will exhibit a new property and transmit it to its 
offspring), thus allowing the development of genetically en-
gineered plants (Peleman & Van der Voort, 2003).

Despite the acknowledged significant contribution of 
DNA technology since the early 1980s to shortening the time 
for developing new superior varieties from around twenty to 
within 5–10 years (Peleman & Van der Voort, 2003), it be-
comes crucial to get a compromise with the society. Hence, 
social demands for transparency and proper information from 
the food industry must be taken into account when alterna-
tive technologies are developed and proposed to cope with 
increasing food demand, as detailed in section 8.7.

Genetically modified organisms
Genetically modified organisms (GMOs) and genetically 
modified foods are imprecise terms that refer to the use of 
transgenic crops (Borlaug,  2000) whose genome has been 
modified to enhance selected characteristics (e.g., resist-
ance to pests, resistance to drought, more productive grains) 
that can potentially contribute to increased food production 
(Qaim & Kouser, 2013). Indeed, several authors have stated 
that transgenic plants can enhance household income and liv-
ing standards of small-scale farmers in developing countries 
(Ali & Abdulai, 2010; Kathage & Qaim, 2012), such as adop-
tion of the BT (Bacillus thuringiensis) cotton in India, which 
has significantly improved calorie consumption and dietary 
quality, reducing food insecurity by 15%–20% among cotton-
producing households (Qaim & Kouser, 2013). However, the 
role of transgenic plants is still under a huge controversy, 
which in turn is translated into a public reticence and opposi-
tion that eventually prevents their more widespread cultiva-
tion (Qaim & Kouser, 2013).

Consumption of GMOs is subject to passionate discus-
sions. Experimental studies have shown contradictory results, 
either demonstrating that consumption of GMOs causes a 
number of diseases in laboratory test organisms, while others 
do not show any impact on their health (Novotny, 2018). In 
many countries, the Precautionary Principle was neglected in 
the case of GMOs and these have been introduced in farm-
ing without convincing evidence about their harmlessness to 
humans and wildlife. This created a conflict where from the 
public there is, on one side, rejection to control crops at the 
cost of unrestricted environmental impact, and, on the other 
side, a resistance of consumers to foods produced with GMOs 
because of their potential harmful health effects. Both argu-
ments are based on past negative experiences implying tech-
nological developments implemented without precaution.

The long-term research of the European Commission 
(EC) stated in  2010 that the established technology on 
transgenics (ETGM) is not per se riskier than conventional 
plant breeding technologies (CBT). During the last years, 
the EC has published clarifying information about ETGM, 
CBT and a growing number of NBT currently being used 
for food production (European Commission, 2019a, 2019b). 
Indeed, some of them has been ruled, as the GMOs and crops 
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developed through the editing-gene technology (section 
Genome-editing technologies).

Mutation breeding technologies
Mutation breeding, also called mutagenesis, consists in ex-
posing seeds to mutagen factors, either chemical (ethyl 
methane sulfonate EMS) or environmental (ultraviolet light, 
ionizing radiation as X-rays, gamma-rays) in order to gener-
ate plant mutants with desirable traits (Tanaka et al., 2010). 
Mutations are generated by spontaneous mutation. The re-
sultant selected mutants—usually called mutagenic plants—
are used as parents to be bred with other cultivars in breeding 
programs.

According to Vives-Valles and Collonnier (2020), or-
ganisms obtained by (nontargeted) mutagenesis are not 
considered as genetically modified organisms GMOs by 
the European Directive 18/2001/EC (Broll et  al.,  2019; 
Ledford, 2019). Independently of that, at present, it is unclear 
how many varieties coming from mutagenic plants are used 
in agriculture around the world, as these seeds are commonly 
not labelled as having a mutagenic provenance (GLP, 2016).

An example of the use of mutagenesis to address food se-
curity is the development of a modified variety of rice devel-
oped in Vietnam with a shorter life cycle, which allows three 
crops per year instead of only two, thus contributing to an in-
creased annual rice production (Do, 2009; FAO-IAEA, 2017).

Genome-editing technologies
Genome-editing—also known as gene-editing or genome en-
gineering—, is a new type of genetic engineering that allows 
to insert, delete, modify or replace a given allele in a par-
ticular locus of an individual in a precise manner (González-
Recio et  al.,  2017). At present, genome-editing is being 
rapidly disseminated due to its capability to induce modifi-
cations at specific points of the genome, thus conferring a 
very low incidence of unwanted side effects—compared to 
earlier genomic technologies that enabled DNA insertions 
“randomly” only—, and its accessibility, as it does not re-
quire a significant investment of infrastructure to be applied 
(González-Recio et al., 2017). This technology does not in-
corporate transgenic modifications and is far superior to mu-
tagenesis (Georges & Ray, 2017), leading to the development 
of plants that could also exist by natural means or by conven-
tional breeding techniques (Duensing et  al.,  2018). Hence, 
several authors believe that there would be strong arguments 
to classify and regulate genome-edited crops similarly to 
conventionally bred crops (Duensing et  al.,  2018; Georges 
& Ray, 2017; Ma et al., 2018), and therefore, a potential so-
cietal acceptance to this technology (Georges & Ray, 2017; 
Ma et al., 2018).

Indeed, the US Department of Agriculture of the United 
States (USDA), as well as Brazil, Argentina and Australia, 
announced in June 2018 that, as these mutations could have 

also occurred in nature, there would be no necessity to regu-
late gene-edited crops (Ledford, 2019). But, contrastingly, in 
July 2018, the European Court of Justice (ECJ) ruled gene-ed-
ited crops under the same European Directive 18/2001/EC 
established for GMOs (Broll et  al.,  2019; Ledford,  2019), 
therefore restricting the sale of unauthorized gene-edited 
food crops. At the current state-of-the-art, there is not (yet) 
a straightforward way to detect the few DNA bases altered 
in gene-edited crops—in contrast with conventional GMOs 
in which long stretches of DNA are transplanted from one 
species to another—, thus turning these gene-editing alter-
ations indistinguishable from naturally occurring mutations 
(Ledford, 2019). Certainly, this EC decision pushes plant sci-
entists to find a time and cost-effective method to evidence 
the “imperceptible” gene-editions in food crops, as their pres-
ence in the international market poses the risk that a gene-ed-
ited food could eventually reach the supermarket shelves in 
those countries where they are not explicitly regulated and/
or approved.

8.5 | Enhancing the use of underutilized 
crops and resources

Underutilized crops as legumes, roots, Andean cereals and 
other neglected crops, are a proven food source of high-nutri-
tional value (Cullis & Kunert, 2017) that could help to meet 
the challenge of achieving food security in the near future. 
For instance, quinoa, an Andean cereal cultivated since be-
fore the Inca's Empire in Peru and Bolivia, has been globally 
recognized as a key crop to eradicate hunger, malnutrition 
and poverty, due to its high-protein content, thus being culti-
vated nowadays also in the USA, Europe, Africa (Kenya) and 
the Himalaya region, among other areas around the world 
(FAO, 2013). We need more success stories, such as this of 
quinoa, to achieve a sustainable food production, especially 
in terms of protein sources, in order to cope with its increas-
ing demand from the continuous growing population.

Several attempts to provide with protein sources for ani-
mal and human consumption have been proposed. However, 
the per se nature of the approaches has not always matched 
with consumers’ preferences. A good example is the in vitro 
cultivation of cells of beef-meat, for example, to create an 
edible burger, proposed by a research study developed by 
Maastricht University in 2014 (Tian et al., 2016). Although 
with higher acceptance, the combination of plant sources—
currently soy, wheat, rice, corn, peas, canola and potato—in 
order to achieve adequate essential amino acid profiles, has 
also raised concerns, due to the fact that plant protein utili-
zation at large scale means an increase of cropping-land for 
these crops, thus cancelling the benefits of the reduction of 
the environmental impact by using vegetal instead of animal 
food sources (Marinero, 2018).
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In the last decade, there has been a worldwide rediscov-
ery of insects as a source of proteins, which eventually may 
contribute to turn some agricultural pests into usable food. 
Consumption of insects as staple food has been present 
throughout history in Asia, Africa and Americas, but was 
forgotten in contemporary western civilization. A recent “re-
discovery”, more or less at the same time in Canada and The 
Netherlands in early 2010s, called attention on edible insects 
as an important protein source (Tian et al., 2016; Van Huis, 
Dicke, & van Loon  2015, Van Huis, Van Gurp, & Dicke 
2014), that achieved global recognition source by FAO in 
2015. In Peru, insects were long time used as a common 
food source by native communities from the Amazon region. 
Currently, the Demolitor project of the National Agrarian 
University La Molina is promoting insect-based food in form 
of energetic cacao-cereals bars. These are made with flour 
of Tenebrio molitor (Insecta, Coleoptera) as main ingredient, 
which provides twice the Fe content compared with meat, 
combined with native cereals, such as quinoa (Chenopodium 
quinoa) and kiwicha (Amaranthus caudatus), and has 
shown great acceptance by consumers in the whole country 
(Toribio-Chahua, 2019).

8.6 | Sustainable agriculture coping with 
above-mentioned challenges

Achieving a sustainable agriculture that embraces all the 
above-mentioned challenges is not an easy task. Several 
authors concur that IPM—also named integrated agricul-
ture—is the most suitable option to achieve the goal of pro-
ducing healthier, safe food to satisfy global demands (Farrar 
et al., 2016; Peshin et al., 2009; Reganold & Watcher, 2016; 
Stoetzer, 2016) as it represents economic and ecological sus-
tainability (Peterson et al., 2018).

The permanent threat of pests in the agricultural, med-
ical, and commercial sector has three main effects, com-
monly underestimated. These are (a) introduction of new 
pests into regions where their natural controllers are not 
present; (b) pesticides’ resistance developed by pests, thus 
pushing to the use of higher doses and/or a different (usu-
ally more toxic) pesticide; (c) detrimental effects of pesti-
cides on health, either by occupational or nonoccupational 
exposure. Xylella fastidiosa, a vector-borne plant patho-
genic bacterium native from the Americas that causes dra-
matic losses in several crops such as grapes, citrus, olives, 
and stone-fruits, and recently (2013) reported in Europe 
(Italy, France, Spain and Portugal), is an example of these 
above-mentioned points. As X. fastidiosa is transmitted by 
Hemiptera insects (spittlebugs, cicadas and sharpshooters) 
that feed (almost) exclusively on xylem vessels (Morente 
et al., 2018), Hemiptera insects with this characteristic in 
the new infected areas of Europe represent a risk of bacterial 

transmission, as in the Balearic Islands, Spain. There, 
farmers have increased the frequency of pesticide applica-
tion to control the potential vectors, exposing themselves 
to the effects of these products on health, and imposing 
a selection pressure on insects, while (new) phytosanitary 
products are being tested and developed at global level by 
the industry to cope with this plant pathogen. Hence, these 
three points seem to trigger the development of new toxic 
molecules, thus creating a sort of never-ending pesticide 
cycle—a toxic (pesticide) molecule followed by a more 
toxic molecule, which in turn is followed by an even more 
toxic molecule, and so on. This cycle of pesticide—resis-
tance—new-pesticide, has been long-known and shown not 
to be a pest control solution.

Reducing the use of agrochemicals in food produc-
tion, while reducing dietary exposure to synthetic chem-
icals, for example, pesticide residues, is an important goal 
of public health and environmental authorities. Indeed, a 
market for alternatives to chemical pesticides has been cre-
ated (Quarles,  2011a, 2011b, 1993a; Rey,  2016; Weston 
et  al.,  2004). For example, in the last decades, beneficial 
nematodes, bacteria as Bacillus thuringiensis (BT), and a 
number of products derived from fungi and viruses have been 
developed for use as allies in crop protection within green-
house, turf, field, orchard and garden crops (Butt et al., 2001; 
EPA, 2006; Grewal et al., 2005; Hom, 1996). All these are 
important assets to developing a sustainable agriculture.

8.7 | Increasing access to education, 
information and technology

Scientists make their best to develop novel science and tech-
nologies in order to provide a solution to global food security 
issues and achieve the objectives of SDG-2030. However, the 
new techniques often do not get consumer's acceptance easily. 
A study conducted by Frewer et al. (2011) revealed that the rea-
son for lack of confidence on new food technologies is mainly 
due to consumers’ lack of knowledge on the technologies 
per se, and due to fear on consequences of their applications. 
Especially those technologies that interfere with the genomes, 
such as the genetically modified crops and derived foods, are 
the ones that raise most of consumers’ concerns (Frewer et al., 
2011). According to Tian et al. (2016), in consumer's attitude 
a consumer decision is largely influenced by personal experi-
ence and by messages spread by social media, and both are im-
bedded of a great deal of subjective and emotional judgement. 
To achieve a rational consumer's understanding and accept-
ance, there is a lot to do in terms of education and information 
regarding advances in science and technology, which would 
imply the translation of scientific language into a colloquial, 
more in-use language, in order to achieve an effective knowl-
edge-transfer at all levels of society.
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Quality education, together to access to technology and 
information, represent key tools for society to thrive at 
every location, raising human capital and reinforcing eco-
nomic growth. It refers to education in all its forms, that is, 
formal and informal, comprising extension, capacity-build-
ing, knowledge transfer and management. Information and 
Communication Technologies (ICTs) constitute a supportive 
tool to life sciences to bring out benefits in the near future 
(Frech,  2017), allowing reinforcing education of farmers 
about the entire agro-ecosystem, in order to get a better man-
agement of water, soils and crops.

As seen in previous paragraphs, present approaches of novel 
science and technology offer the means to succeed, although 
demand the implementation of an educational program fo-
cused on knowledge transfer and research at all levels of the 
food chain. EU activities against X. fastidiosa are an example of 
this, as they include, in addition to the surveillance and eradica-
tion/containment programmes (Regulation EU-652/2014), the 
implementation of knowledge transfer activities and the use of 
advisory services (Regulation EU-1305/2013) for farmers, and 
research activities to cope with them, as the POnTE, X-factor 
and other (pilot) projects conducted in the framework of the 
HORIZON-2020-EU program (European Commission, 2019a, 
2019b). This complementarity underlines the high importance 
of the multi, inter and transdisciplinary teams in research, de-
velopment, and innovation activities stated above.

Similarly, current research on potato constitutes an exam-
ple of how novel science and access to technology approaches 
can boost food security. Scientists consider potato as a diffi-
cult crop to breed since its tetraploid genetic characteristic 
confers a low chance of inheriting desirable alleles in all four 
copies of chromosomes, compared to diploid species that 
have only two copies of chromosomes. Thus, potato breeders 
are nowadays developing diploid potato varieties via parental 
inbreeding, similar to that used in hybrid maize production 
(Stokstad, 2019). The diploid condition increases the likeli-
hood of obtaining a highly stress-resilient and nutritional po-
tato by introducing genes from wild relatives to the cultivated 
potato in about a half of the time required by conventional 
breeding means, which also allows the use of true potato 
seeds for sowing (Stokstad, 2019). The latter would enable 
the cultivation of the crop in poorly accessible areas of the 
Peruvian Andes highlands and elsewhere (Stokstad,  2019). 
The project is conducted with the engagement of native 
Andean communities in Peru, including a knowledge-trans-
fer and capacity-building program using ICTs, which indeed 
increases the likelihood of success.

9 |  CONCLUSIONS

During the last century, novel scientific and technological ad-
vances in food production have profoundly affected human 

nutrition and health, the environment and wildlife globally. 
On the positive side, wheat production has almost doubled 
over the last 50  years supporting the population growth. 
Behind this achievement lays the work in different disci-
plines, and this work continues daily.

In spite of this, we realize today that agriculture and food 
production suffer with several issues and do not seem to be 
able to meet the challenge of producing more and healthier 
food for the current and future generations.

From the data reviewed across this manuscript, it is con-
cluded there are four main themes that need to be addressed 
in priority, taking lessons from the past to rethink and formu-
late new directions.

The first theme is the use of synthetic pesticides. The 
poisoning of soil and water and biodiversity losses, together 
with human health deterioration, are more than enough to 
demonstrate this is not a good path. IPM must be imple-
mented everywhere to reduce applying synthetic pesticides 
without losing food production, thus enabling a simultaneous 
development of new environment-compatible food produc-
tion strategies.

The second is the misuse of fertilizers that have too 
high-environmental costs and compromise drinking water 
quality and life in vast areas of the oceans. To pursue the 
same avenue will not bring a better future. We need to reas-
sess, regulate, and make a better use of fertilizers and because 
this issue has already significant transboundary environmen-
tal impacts, the solutions must be agreed and implemented at 
global level.

The third is the need for strengthening genetic resources, 
that is, maintaining germplasm banks and adopting more 
suitable varieties and landraces in a wise and wide consensus.

The fourth theme is the need to achieve efficient plant/
crop-breeding programs, strengthening the inclusion of ge-
netic resources through a wise and prudent use of the new 
breeding technologies to develop highly resilient and pro-
ductive crop varieties able to cope with both environmental 
stresses and consumer/market preferences.

Nonetheless, science and technology alone will not suc-
ceed to meet these challenges. Across these complex is-
sues, education must prevail as the key to provide people 
with healthier, safer food in a sustainable fashion. In devel-
oping countries, knowledge transfer is needed to improve 
agriculture and feed people, provide better health and fix 
populations in their regions, preventing at the same time 
wars and mass migration that do not help achieving social 
justice. Likewise, in developing and developed countries, 
dissemination of knowledge can help to reach wider con-
sensus on topics that remain as causes of societal unrest, as 
for example, GMOs.

Finally, thorough application of the Precautionary 
Principle must be present and transversal to all these areas to 
avoid unwise and careless initiatives like those in the past that 
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have caused destruction of the environment. Having a future 
depends on healthy and functional ecosystems.

To succeed, the scientific and technological progress 
clearly requires also adequate action by regulatory authori-
ties and governments, concerted at local, national, regional 
and international level, aiming at environmental and social 
justice.
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